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Summary 
Alternative polyadenylation (APA) generates transcript 
isoforms with different 3’ ends. Differences in 
polyadenylation sites usage, which have been 
associated with diseases like cancer, regulate mRNA 
stability, subcellular localization, and translation. By 
characterizing APA across the 24-hour day in mouse 
liver, here we show that rhythmic gene expression 
occurs largely in an APA isoform-specific manner, and 
that hundreds of arrhythmically expressed genes 
surprisingly exhibit a rhythmic APA isoform. The 
underlying mechanisms comprise isoform-specific 
post-transcriptional regulation, transcription factor 
driven expression of specific isoform, co-transcriptional 
recruitment of RNA binding proteins that regulate 
mRNA cleavage and polyadenylation, and, to a lesser 
extent, cell subtype-specific expression. Remarkably, 
rhythmic expression of specific APA isoforms 
generates 24-hour rhythms in 3’ UTR length, with 
shorter UTRs in anticipation of the mouse active phase. 
Taken together, our findings demonstrate that cycling 
transcriptomes are regulated by APA, and suggest that 
APA strongly impacts the rhythmic regulation of 
biological functions. 
 
 
Introduction 
Most genes in higher eukaryotes contain multiple sites at 
which RNA can be cleaved and polyadenylated, leading to the 
expression of several distinct transcript isoforms (Reyes and 
Huber, 2018; Wang et al., 2008). The usage of these 
alternative polyadenylation (APA) sites affects 3’ UTR length 
and/or protein sequence, and leads to transcripts being 
truncated or containing additional exonic or intronic 
sequences (Tian and Manley, 2013, 2017). The length of the 
3’ UTR tail itself has large implications on RNA stability, 
mostly because it defines the probability for a 3’ UTR to be 
targeted by RNA binding proteins (RBPs), miRNA, or long 
non-coding RNA (Gong and Maquat, 2011; Licatalosi et al., 
2008; Sandberg et al., 2008). 3’ UTR length also affects the 
nuclear export and cytoplasmic subcellular localization of 
many mRNAs, thus allowing for the enrichment of proteins at 
a specific cellular location (An et al., 2008; Martin and 

Ephrussi, 2009). Differences in mRNA 3’ UTR length can 
additionally lead to differences in the localization of the 
resulting protein independently of mRNA localization, 
suggesting that 3’ UTRs can also bear crucial roles in the 
function of the protein they encode (Berkovits and Mayr, 
2015).  

Investigation of gene expression at the genome-wide level 
is commonly achieved through the use of massively parallel 
RNA-Seq libraries, where analysis frequently quantifies 
expression across all potential isoforms and reports a single 
value for each gene. Thus, RNA-Seq analysis commonly 
relies on the assumption that all distinct isoforms of each gene 
are regulated in a similar manner. However, it remains 
unclear whether APA isoforms are for the most part regulated 
in a similar manner, or if differential regulation of APA isoform 
expression occurs, and, if so, how this may affect downstream 
biological functions. Recent evidence has shown that 
biological processes like pluripotency are regulated by APA 
(Modic et al., 2019; Sandberg et al., 2008; Ye and Blelloch, 
2014), and that defects in APA can lead to health defects 
including cancer (Gruber and Zavolan, 2019; Mayr and Bartel, 
2009; Rehfeld et al., 2013; Weng et al., 2019). The underlying 
mechanisms involve, at least in part, the co-transcriptional 
loading of RBPs, which promote cleavage and 
polyadenylation at proximal APA sites to lead to increased 
expression of APA isoforms with shorter 3’ UTRs and 
decreased expression of isoforms with long 3’ UTRs. Thus, 
APA seem to mostly involve changes in the relative ratio of 
short vs. long APA isoforms without affecting the overall level 
of transcription initiation (Gruber and Zavolan, 2019; Xu and 
Zhang, 2018). 

Regulation of rhythmic gene expression by the circadian 
clock has been described in numerous species and tissues, 
and about half of the transcriptome in mammals is 
rhythmically expressed in at least one tissue (Mure et al., 
2018; Ruben et al., 2018; Zhang et al., 2014). This 
widespread rhythmic expression is generated by a 
transcriptional/translational negative feedback loop, which in 
mammals is initiated by the heterodimeric transcription factor 
CLOCK:BMAL1 (Cox and Takahashi, 2019). In addition to 
transcriptional regulation, the steady-state levels of rhythmic 
transcripts are regulated post-transcriptionally (Kojima et al., 
2011; Preussner and Heyd, 2016; Wang et al., 2018a). 
Rhythmic gene expression is critical for the temporal 
organization of biological functions over the course of the day 
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and night, and its dysregulation by genetic or environmental 
cues leads to a wide range of pathological disorders including 
metabolic syndrome, cancer, and cardiovascular disorders 
(Chaix et al., 2018; Lamia et al., 2008; Rudic et al., 2004; 
Shimba et al., 2005). While analysis of standard RNA-Seq 
datasets have been used to investigate if APA regulates 
cycling transcriptomes (Gendreau et al., 2018; Liu et al., 
2013), it still remains unknown if APA isoforms of rhythmically 
expressed genes are all rhythmically regulated, or if genes 
characterized as arrhythmically expressed may have one or 
more cycling APA isoforms.  

In this study, we investigated if APA leads to widespread 
differential expression of distinct transcript isoforms by 
performing a comprehensive analysis of the diurnal mouse 
liver transcriptome using 3’ mRNA-Seq. Our results 
demonstrate that almost a thousand genes in the mouse liver 
exhibit differential APA transcript rhythmicity, and that 
hundreds of genes characterized as arrhythmically expressed 
harbor a rhythmic APA isoform. The underlying mechanisms 
involve differential post-transcriptional regulation between 
APA isoforms for about half of these genes, and, to a lesser 
extent, cell subtype-specific APA isoform expression. Our 
results also indicate that changes in the transcriptional activity 
of transcription factors regulate rhythmic gene expression in 
a largely APA isoform-specific manner, likely through the co-
transcriptional recruitment of RBPs that regulate mRNA 
cleavage and polyadenylation. Interestingly, this regulation 
occurs primarily on distal APA isoforms, and is the basis for 
24-hour rhythm in 3’ UTR length for hundreds of genes. 
Together, our findings demonstrate that the regulation of 
rhythmic gene expression is largely APA isoform-specific, and 
suggest that this regulation may have a large impact on the 
rhythmic regulation of biological functions by the circadian 
clock. 
 
 
Results 
APA isoforms exhibit differential rhythmicity in mouse 
liver 
To determine if APA leads to isoforms having different 
expression profiles, we investigated APA usage in mouse 
liver collected across the 24-hour day using 3’ mRNA-Seq 
(Figure 1A). As previously reported (Zhang et al., 2014), 
quantification of mRNA expression across gene models 
showed that almost 30% of the expressed mouse liver 
transcriptome is rhythmic (Figure 1A, S1A, S1B). To assess 
whether some genes exhibit rhythmic or arrhythmic 
expression of APA isoforms, we generated a database of 
polyadenylation sites (PAS) in mouse liver using 3’ mRNA-
Seq reads from over 100 biologically distinct libraries and 
comprising more than one billion uniquely mapped reads (see 
methods). We identified 29,199 high-confidence PAS located 
in 10,160 genes (Figure S1C; Tables S1, S2). Among these 
genes, 7,693 (75.7%) had 2 or more PAS (Figure S1D).  

We used this PAS database and combined two statistical 
analyses to determine if APA isoforms from the same gene 
can exhibit differences in rhythmic expression. First, we 
compared rhythmic expression between each gene and their 
respective APA isoforms. We found that PAS rhythmicity 
followed for the most part gene rhythmicity, with the majority 
of arrhythmic genes containing arrhythmic APA isoforms and 
the majority of rhythmic genes containing rhythmic APA 

transcripts (Figure S1E). However, PAS rhythmicity did not 
consistently match the rhythmicity of its corresponding gene, 
and most rhythmic genes harbored a combination of both 
rhythmic and arrhythmic PAS. Because this comparative 
analysis of rhythmicity relies on thresholds and only returns 
differences in rhythmicity for q-values being just below and 
above threshold, we performed a second analysis of 
differential rhythmicity between every APA isoforms and their 
corresponding gene using DODR (Thaben and Westermark, 
2016). Using this more stringent analysis, about 20% of the 
genes with two or more PAS displayed an APA isoform being 
differentially rhythmic from gene signal. As expected, no 
difference was found between PAS and gene rhythmicity for 
genes with one PAS (Figure S1F). We combined the results 
of these two analyses to identify two groups of differentially 
expressed APA isoforms (Figure 1B, S1G, S2A-C; Tables S3-
S6). The first group (Group 1) consists of 525 APA isoforms 
representing 481 genes that are arrhythmic yet have a 
rhythmic PAS, while the second group (Group 2) consists of 
599 PAS representing 478 genes that are rhythmic yet have 
an arrhythmic PAS. Visualization of the differences between 
gene and PAS signals with heatmaps (Figure 1C, S1H), along 
with IGV browser signals for two representative genes 
(Col18a1 -Collagen Type XVIII Alpha 1 Chain-, and Neu1 - 
Neuraminidase 1-; Figure 1D), illustrates that APA isoforms 
from the same gene can exhibit large differences in rhythmic 
expression. Based on our stringent analysis, these 
differences are widespread, and account for about 10% of the 
genes expressed in mouse liver, and 12.5% of the expressed 
genes having two or more PAS.  

Previous studies have demonstrated that the products of 
APA isoforms differing in their 3’ UTR length but not in their 
coding sequence can be located in different cellular 
membrane compartments, e.g., endoplasmic reticulum (ER) 
membrane vs. plasma membrane (Berkovits and Mayr, 
2015). Interestingly, KEGG pathway and cellular 
compartment ontology analyses revealed that genes in both 
group 1 and 2 were enriched for genes associated with 
intracellular membrane compartments, including lysosome, 
ER-Golgi, autophagosome, and endosome (Figure 1E, 1F; 
Table S7).  

To get insights into the mechanisms that underlie 
differential APA isoform expression, we mapped and 
categorized all PAS as distal 3’ UTR, middle 3’ UTR, and 
proximal 3’ UTR based on their relative location across the 3’ 
UTR (Figure 1A). We also included a category termed 
truncated for PAS located upstream the last exon, as this 
generates a truncated protein upon translation. Moreover, 
PAS located up to 1 kb downstream the farthest annotated 
transcription termination site (TTS) were categorized as 
downstream (Figure 1A). Mouse liver genes exhibited a 
relatively equal distribution of proximal, middle, distal, and 
truncated PAS, with the remaining 3% of PAS being located 
downstream the annotated TTS (Figure 1G). Genes with 
differential APA isoform expression (groups 1 and 2) were 
enriched for PAS located in the middle 3’ UTR, mostly 
because they have on average a higher number of PAS per 
gene (Figure S1I; Table S8). Differentially rhythmic APA 
isoforms were enriched for proximal, distal and downstream 
PAS, suggesting that longer 3’ UTRs are not the sole factor 
contributing to differentially rhythmic APA isoform expression 
(Figure 1H).  
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Figure 1: APA isoforms exhibit differential rhythmicity in mouse liver. 
(A) Diagram illustrating how gene transcription can lead to the expression of multiple APA isoforms, and how 3’ mRNA-Seq can be used to 
analyze the expression of individual APA isoforms.  
(B) Mouse liver 3’ mRNA-Seq rhythmicity analysis, and identification of genes having APA isoforms being differentially rhythmic. Group 1: 
genes being arrhythmically expressed, but having at least one APA isoform being rhythmic; Group 2: genes being rhythmically expressed, 
but having at least one APA isoform being arrhythmic. (C) Heatmaps representing the expression of a gene (left) and of its corresponding 
differentially rhythmic APA isoform (right) for Group 1 and 2 genes. Each heatmap column represent a single liver sample (n=36 total; 6 
timepoints, n=6 per time point).  
(D) Left: IGV browser view of Col18a1 and Neu1 expression across the 24-hour day. Signal for each time point corresponds to the average 
of 6 biological replicates. Arrows indicate the different APA isoforms, and the day:night cycle is represented by the white and black bars, 
respectively. Right: expression of Col18a1 and Neu1 at the gene and APA isoform levels. R = rhythmic expression; AR = arrhythmic 
expression. The sum of all PAS signal does not exactly match gene signal because of the normalization procedure (see methods for 
details).  

(legend continued on next page) 
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Cell subtype specificity contributes to differential APA 
isoform expression 
Because the liver is a heterogeneous tissue, a mechanism 
that could explain the differential expression between APA 
isoforms is cell subtype specificity, with differentially rhythmic 
isoforms of Group 1 and 2 being expressed in different cell 
subtypes compared to other isoforms. The liver is composed 
of Kupffer cells and endothelial cells in addition to the 
dominant population of hepatocytes. Its anatomical 
organization into lobules generates a gradient of high oxygen 
and nutrients (pericentral area) to low oxygen and nutrients 
(periportal area), that also contributes to hepatocyte subtypes 
carrying out specialized metabolic functions (Figure 2A) 
(Braeuning et al., 2006; Rappaport et al., 1954). To determine 
if differentially expressed APA isoforms are expressed in 
specific cell subtypes, we examined a public mouse liver 
single-cell RNA-Seq dataset (Halpern et al., 2017). This 
dataset was generated using MARS-Seq and thus sequenced 
3’ mRNA reads, thereby enabling the analysis of APA isoform 
expression across the different liver cell subtypes. 

Several genes preferentially expressed at opposing ends 
of the liver lobules are commonly used to differentiate 
hepatocyte subtypes (Braeuning et al., 2006; Gebhardt and 
Matz-Soja, 2014). Using these hepatocyte marker genes 
along with marker genes for Kupffer and endothelial cells, we 
spatially reconstructed the liver subtypes by principal 
component analysis. Expression analysis of two hepatocyte 
markers, the cytochrome P450 genes Cyp2f2 and Cyp2e1, 
across more than 1,000 cells showed biased expression 
towards the periportal and pericentral ends of liver lobules, 
respectively (Figure 2B). We used this hepatocyte subtype 
zonation to split the hepatocyte population into 3 major 
groups, resulting in a total of 5 groups with the identified 
Kupffer and endothelial cells (Figure 2C). Subsequent 
analysis of the APA isoforms for six hepatocyte marker genes 
confirmed that their expression was partitioned as expected 
across the liver lobule, thereby validating our spatial 
reconstruction of the liver using single-cell data (Figure 2D). 

To determine if APA isoforms are expressed in specific 
cell subtypes, we selected the Gini coefficient method as a 
quantitative measurement of cell subtype specific expression 
(Kryuchkova-Mostacci and Robinson-Rechavi, 2017; Wright 
Muelas et al., 2019). This method reports a coefficient ranging 
from 0 to 1, corresponding respectively to equal expression 
across all cell subtypes and expression in a unique cell 
subtype. Unsurprisingly, many APA isoforms only showed 
small biases in expression across the 5 groups, resulting in 
Gini coefficients around 0.5 (Figure 2E, S3). Genes with two 
or more PAS had higher Gini coefficient than genes with one 
PAS, indicating that APA contributes to cell subtype specific 
expression. Moreover, differentially rhythmic APA isoforms of 
Group 1 and 2 exhibited significantly higher Gini coefficients 
than other transcripts, indicating that subtype specific 
expression contributes to the differential rhythmic expression 
of APA isoforms (Figure 2F). To validate this finding, we set a 

Gini coefficient of 0.65 as a cutoff for cell subtype specific 
expression, based on the profile of Gini coefficients across all 
APA isoforms and the Gini coefficient for the different marker 
genes (Figure S3). Using this cut-off, 28% of the differentially 
rhythmic APA isoforms of Group 1 and 2 were expressed in a 
cell subtype specific manner while 22% of the other APA 
isoforms have a Gini coefficient higher than 0.65 (Figure 2G). 
This suggests that specific subtype expression has a small, 
yet significant, effect on the differential rhythmic expression of 
APA isoforms.  
 
Post-transcriptional regulation significantly contributes 
to differential APA isoform rhythmic expression 
Given that cell subtype specificity can only partially explain 
the differential expression of APA transcripts, we next 
examined if post-transcriptional events could be involved. To 
this end, we performed 3’ end RNA-Seq of nuclear RNA using 
the same livers as those used for total 3’ end RNA-Seq. 
Comparison of the number of intronic reads between total and 
nuclear RNA, which mostly originate from polyA stretches in 
introns that are primed by the oligo-dT primer during library 
first strand synthesis, confirmed that 3’ end RNA-Seq of 
nuclear RNA increased the number of intronic reads (Figure 
S4A). Analysis of rhythmic gene expression showed that 
about a third of the cycling genes do not exhibit rhythmic 
nuclear RNA expression, indicating as previously reported 
that post-transcriptional regulation accounts for a fraction of 
the cycling transcriptome (Figure 3A, 3B; Table S9) (Koike et 
al., 2012; Menet et al., 2012; Wang et al., 2018a). 
Additionally, genes found to be rhythmic at both nuclear and 
total RNA levels, which included all clock genes, displayed 
similar peak phases of expression (Figure S4B, S4C).  

To determine if post-transcriptional regulation contributes 
to the differences in APA isoform rhythmicity, we examined 
the nuclear expression of differentially expressed APA 
isoforms. Analysis of Group 1 isoforms (rhythmic APA 
isoforms, arrhythmic genes) revealed that 82.9% of APA 
isoforms were arrhythmically transcribed (Figure 3C; Table 
S10), indicating that post-transcriptional regulation largely 
contributes to their rhythmic expression. Conversely, 80.3% 
of APA isoforms of Group 2 (arrhythmic APA isoform, 
rhythmic gene) were transcribed arrhythmically, indicating 
that 19.7% of these isoforms are post-transcriptionally 
regulated (Figure 3C). Thus, post-transcriptional events 
significantly contribute to different APA isoform expression, 
particularly for those being rhythmically expressed when gene 
signal is arrhythmic.  

Visualization of nuclear signal for Col18a1 and Neu1 
confirmed these results (Figure 3D). They also revealed large 
differences in the relative abundance of APA transcripts 
between nuclear RNA and total RNA with, for example, higher 
nuclear vs. total signal for distal APA isoforms (APA2 for 
Col18a1 and APA3 for Neu1; Figure 3D). Differences in the 
relative amount of RNA transcripts in the nucleus vs. 

 
 
 
 

 
(E, F) KEGG pathway (E) and Gene Ontology - Cellular Compartment analysis (F) for genes in Group 1 and 2.  
(G) Distribution of the PAS location for all genes, only those having 2 or more PAS, and for the Group 1 and 2 genes. * denotes significant 
differences (chi-square test; p < 0.05).  
(H) Enrichment of each PAS location for the differentially rhythmic APA isoforms of Group 1 and 2. * denotes a significant enrichment 
(hypergeometric test; p < 0.05).  
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cytoplasm and/or total RNA are frequently used as a proxy for 
RNA half-life, with high ratio indicative of short RNA half-life 
(Luck et al., 2014; Wang et al., 2018a). Differential analysis of 
nuclear/total RNA ratio with DESeq2 for all APA isoforms 
revealed widespread differences, with 14.6% PAS exhibiting 
a high nuclear/total ratio and 33.2% PAS exhibiting a low ratio 
(Figure 3E). Consistent with our observation with Col18a1 
and Neu1, distal APA isoforms had increased nuclear/total 
signal compared to proximal and middle APA transcripts, 
suggesting that APA isoforms with longer 3’ UTR have on 

average shorter half-lives (Figure 3F, Table S11).  
To determine if RNA half-life accounts for some of the 

post-transcriptional regulation of rhythmic APA isoform 
expression, we examined the nuclear/total RNA ratio of 
Group 1 and 2 transcripts. Differentially expressed APA 
isoforms of Group 1, but not of Group 2, displayed increased 
nuclear/total RNA ratio when compared to other isoforms 
(Figure 3G). This suggests that shorter RNA half-life likely 
contributes to the rhythmicity of APA transcripts that are 
transcribed arrhythmically across the 24-hour day.  

 

Figure 2: Cell subtype specificity moderately contributes to differential APA isoform expression. 
(A) Anatomical compartmentalization of the liver into lobules and different liver cell types. A gradient from high to low oxygen and nutrient 
concentration along the periportal-pericentral axis influences the metabolic functions carried out by hepatocytes.  
(B) Principal component analysis (PCA) plot of the distribution of single cells based on the expression of marker genes for hepatocytes, 
endothelial cells, and Kupffer cells. Cells are shaded according to their expression of Cyp2f2 (left) and Cyp2e1 (right).  
(C) Same PCA plot as in B, shaded according to their assigned group. Hepatocyte group H1 is enriched for periportal hepatocytes, while 
hepatocyte group H3 is enriched for pericentral hepatocytes.  
(D) APA isoform expression of 6 genes used to compartmentalize hepatocytes along a periportal-pericentral axis in the hepatocyte subgroups 
H1-3.  
(E) Percent expression of each APA isoform in the 3 hepatocyte subgroups, endothelial cells, and Kupffer cells. The Gini coefficient for each 
isoform is shown on the right. APA isoforms are sorted based on their Gini coefficient and the subgroup in which their expression is the highest.  
(F) Gini coefficient for all PAS, for genes with only one PAS, for genes with 2 or more PAS, and for APA isoforms in Group 1 and 2. diff PAS: 
differentially rhythmic APA isoforms; other PAS: APA isoforms in Group 1 or Group 2 genes being expressed similarly to the gene signal. * 
denotes significant differences (Kruskal Wallis test; p < 0.05).  
(G) Percentage of APA isoforms with a Gini coefficient > 0.65.  
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Figure 3: Post-transcriptional regulation significantly contributes to differential APA isoform expression 
(A) Number of rhythmically expressed genes in total RNA and nuclear RNA.  
(B) Heatmaps representing differential rhythmic gene expression in total RNA (left) and nuclear RNA (right). Each heatmap column represent 
a single liver sample for both total and nuclear RNA (n=36 total; 6 timepoints, n=6 per time point).  

(legend continued on next page) 
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Bmal1 regulates the expression of many genes in an APA 
isoform-specific manner 
Increasing evidence indicate that RNA processing events, 
including mRNA decay, mRNA subcellular location, and APA, 
can be regulated by promoter events (Bregman et al., 2011; 
Haimovich et al., 2013; Hocine et al., 2010; Moore and 
Proudfoot, 2009; Trcek et al., 2011; Zid and O'Shea, 2014). 
The primary underlying mechanism involves the recruitment 
of RBPs by transcription factors (TFs) to cis-regulatory 
elements, the subsequent loading of RBPs on the C-terminal 
domain (CTD) of RNA Polymerase II (Pol II), and RBP 
deposition onto the nascent transcript during transcription 
elongation and termination. Because APA can be regulated 
by RBPs (Di Giammartino et al., 2011; Proudfoot, 2016), we 
sought to determine if TFs could regulate the expression of 
specific APA isoforms. We reasoned that if APA is regulated 
co-transcriptionally by TFs, then, knocking out a TF should 
affect individual/specific APA isoforms. To test this possibility, 
we performed 3’ mRNA-Seq across the 24-hour day using 
liver RNA of clock-deficient Bmal1-/- mice (i.e., lacking a 
circadian activator) fed ad libitum (n = 36 mice; n = 6 per 
timepoint), and quantified APA isoform expression.  

As expected, the number of rhythmically expressed APA 
isoforms was dramatically reduced in clock-deficient Bmal1-/- 
mice (Figure 4A). Analysis of differential expression with 
DESeq2 showed that 28.1% of APA isoforms were 
significantly affected in Bmal1-/- mice, with a roughly even 
distribution between up- and down-regulation (Figure 4B). 
Consistent with a role of Bmal1 in driving rhythmic gene 
expression, affected APA isoforms were enriched for direct 
Bmal1-/- target genes and rhythmic APA transcripts (Figure 
4C). Interestingly, misregulation of APA isoform in Bmal1-/- 
mice was strongly influenced by the phase of rhythmic 
expression in wild-type mice, with down-regulated APA 
isoforms having a peak expression biased towards the 
day:night transition and up-regulated ones showing a bias 
towards night:day transition (Figure 4D). Given that BMAL1 
rhythmic DNA binding peaks during the day (Koike et al., 
2012; Rey et al., 2011), these results support the notion that 
BMAL1 has a direct effect on APA isoforms expression, 
similar to that shown recently at the gene level (Greenwell et 
al., 2019; Koronowski et al., 2019; Trott and Menet, 2018). 

To determine if APA isoforms from a given gene may be 
differentially affected by Bmal1-/-, we assayed whether APA 
isoforms were similarly affected by Bmal1-/- or if effects were 
specific to some APA transcripts. We found that 41.1% of the 

genes exhibited an isoform-specific effect (Figure 4E, S5A). 
In addition, only 19.8% of the genes having a misregulated 
APA isoform in Bmal1-/- exhibited a uniform misregulation 
among all isoforms (Figure 4F, Table S12). Differences 
between APA isoform expression in Bmal1-/- were observed 
for genes having two or three APA isoforms, indicating that 
our results were not biased by genes harboring a large 
number of APA transcripts (Figure S5B). Interestingly, 
isoform-specific effects in Bmal1-/- mice consisted almost 
exclusively of a combination of unaffected APA isoforms with 
either up-regulated or down-regulated APA transcripts 
(Figure 4E, 4F). Because an effect of BMAL1 on PAS choice 
would result in genes having a combination of down-regulated 
and up-regulated APA isoforms (e.g., cleavage at proximal 
PAS instead of distal PAS would concomitantly up-regulate 
proximal APA isoforms and down-regulate distal APA 
isoforms), our results strongly suggest that BMAL1 regulates 
gene expression in an APA isoform-specific manner. This 
notion is exemplified by Col18a1, a BMAL1 direct target gene, 
in Bmal1-/- mouse liver (Figure 4G). While the rhythmic distal 
APA isoform (APA2) exhibits arrhythmic expression in  
Bmal1-/- at levels similar to wild-type mice, the proximal APA 
isoform (APA1) is significantly up-regulated in Bmal1-/-, 
resulting in an arrhythmic Col18a1 gene signal in Bmal1-/- 
mouse at levels corresponding to the peak expression in wild-
type mice (Figure 4G). In contrast, Bmal1-/- did not affect the 
expression levels of APA isoforms of Neu1, which is another 
BMAL1 target gene in mouse liver (Figure 4G).  

Further investigation revealed that PAS location impacted 
whether APA isoforms were up- or down-regulated in  
Bmal1-/- mice (Figure 4H). Distal APA isoforms showed an 
overall decreased expression in Bmal1-/- when compared to 
wild-type mice (e.g., lower Bmal1-/-/wild-type expression ratio) 
whereas truncated and proximal APA isoforms exhibited 
increased expression in Bmal1-/- when compared to wild-type 
mice (as exemplified with Col18a1; Figure 4G). Taken 
together, our results indicate that BMAL1 regulates gene 
expression in an APA isoform-specific manner, and suggest 
that BMAL1 promotes the expression of APA isoforms with 
longer UTRs.  

 
Rhythmic food intake regulates rhythmic gene 
expression in an APA isoform-specific manner 
To test more specifically if changes in TF activity regulate 
rhythmic gene expression in an APA isoform-specific manner, 
we reanalyzed 3’ mRNA-Seq datasets that we generated 
recently and that investigated how the daily rhythm of food 

 
 
 
 
 
 
 

(C) Pie chart (left) and heatmap (right) representation of the differentially expressed APAS isoforms of Group 1 and 2 in total RNA and 
nuclear RNA.  
(D) Left: IGV browser view of Col18a1 and Neu1 nuclear expression across the 24-hour day. Signal for each time point corresponds to the 
average signal of 6 biological replicates. Right: expression of Col18a1 and Neu1 at the gene level and at the level of individual APA isoforms 
in total RNA (black) and nucleus (green). R = rhythmic expression; AR = arrhythmic expression. The sum of APA signal does not exactly 
match gene signal because of normalization procedure (see methods for details).  
(E) Volcano plot representing the log2 fold change of nuclear RNA over total RNA against the DESeq2-reported adjusted p-value for all 
29,199 PAS (n=36 samples per type of RNA). PAS with a significantly decreased ratio (log2 < -1, Padj < 0.05) and significantly increased ratio 
(log2 > 1, Padj < 0.05) are colored in red and blue, respectively.  
(F) Effect of PAS location on the nuclear/total RNA ratio. T: truncated; P: proximal; M: middle; Di: distal; Do: downstream. Groups with 
different letters are significantly different (Kruskal Wallis test; p < 0.05).  
(G) Distribution of the nuclear/total RNA ratio for APA isoforms of all genes, genes with 1 PAS, genes with 2 or more PAS, and for the 
differentially rhythmic APA isoforms within G1 and G2. * denotes significant differences (Kruskal Wallis test; p < 0.05).  
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intake, which regulates the activity of metabolic TFs over the 
course of the day, drives rhythmic gene expression in mouse 
liver (Greenwell et al., 2019). Specifically, we examined 
rhythmic APA isoform expression in mice fed either only at 
night (NR-fed mice) or arrhythmically across the 24-hour day 
(AR-fed mice). Similar to our findings at the gene level 
(Greenwell et al., 2019), AR-feeding significantly decreased 

the number of rhythmically expressed APA isoforms (Figure 
5A). Under stringent criteria that included a differential 
analysis of rhythmicity with DODR, 2,195 APA isoforms were 
expressed rhythmically in NR-fed mice but not in AR-fed mice 
(RA group), while only 472 APA isoforms were expressed 
rhythmically in AR-fed but not in NR-fed mice (AR group) 
(Figure 5A, 5B). Remarkably, isoforms showing differences in  

 

Figure 4: Bmal1 regulates the expression of many genes in an APA isoform-specific manner 
(A) Number of rhythmically expressed APA isoforms in wild-type liver total RNA (4722), in Bmal1-/- liver total RNA (120), or both (37).  
(B) Volcano plot representing the log2 fold change of Bmal1-/-/wild-type liver total RNA against the DESeq2-reported adjusted p-value (n=36).  
(C) Number of PAS whose expression is up-regulated, down-regulated, or unchanged between Bmal1-/- and wild-type mice.  
(D) Peak phase of rhythmically expressed PAS being significantly down- (red) or up-regulated (blue) in Bmal1-/-.  
(E) Number and percentage of genes with 2 or more PAS displaying either a decrease, no effect, an increase, or a combination of effect in 
Bmal1-/- mouse liver.  
(F) Percentage of genes with 2 or more PAS and having at least one PAS misregulated in Bmal1-/- mice displaying either a uniform effect or 
an APA isoform-specific effect in Bmal1-/- mouse liver.  
(G) Left: IGV browser view of Col18a1 and Neu1 expression in Bmal1-/- mouse liver across the 24-hour day. Signal for each time point 
corresponds to the average signal of 6 biological replicates. Right: expression of Col18a1 and Neu1 at the gene level and at the level of 
individual APA isoforms in liver total RNA of wild-type (black) and Bmal1-/- mice (blue). R = rhythmic expression; AR = arrhythmic expression. 
The sum of APA signal does not exactly match gene signal because of normalization procedure (see methods for details).  
(H) Effect of PAS location on Bmal1-/- / wild-type total RNA ratio. T: truncated; P: proximal; M: middle; Di: distal; Do: downstream. Groups with 
different letters are significantly different (Kruskal Wallis test; p < 0.05).  
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Figure 5: Feeding rhythms regulate rhythmic gene expression in an APA isoform-specific manner  
(A) Number of APA isoforms rhythmically expressed in both AR-fed and NR-fed mice (RR group), NR-fed mice only (RA group), or AR-fed 
mice only (AR group). Top: Venn diagram representation. Bottom: number parsed based on differential rhythmicity analysis (DODR, p<0.05).  
(B) Heatmaps representing APA isoforms rhythmic in both AR-fed and NR-fed mice (RR group), NR-fed mice only (RA group), or AR-fed 
mice only (AR group). Only genes showing differential rhythmicity (DODR, p<0.05) are represented for the RA and AR groups. Each heatmap 
column represent a single liver sample (n=18 total per condition; 6 timepoints, n=3 per time point).  
(C) Percentage of genes in the RR, RA, and AR groups exhibiting differential rhythmicity for a unique APA isoform (grey) or for multiple 
isoforms (yellow). 
(D) Number of genes in the RA group exhibiting differential rhythmicity for a single APA isoform or for multiple isoforms, and parsed based on 
the number of APA isoforms per gene.  
 

(legend continued on next page) 
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rhythmicity between feeding protocols were often the sole 
isoform affected for a given gene. Only 18.9% of genes with 
at least one RA APA isoform had another isoform showing 
differences in rhythmicity between the feeding protocols 
(Figure 5C). Similarly, only 25.1% of the genes with at least 
one AR APA isoform had another APA transcript exhibiting 
differential rhythmicity (Figure 5C). Importantly, this APA 
isoform-specific regulation was observed even for genes 
harboring a large number of APA isoforms, indicating that this 
observation was not biased by genes with few APA transcripts 
(Figure 5D, S6A). These results therefore indicate that 
feeding rhythms affect rhythmic gene expression in a largely 
APA isoform-specific manner.  

To confirm that our findings were not just due to 
rhythmicity thresholds and/or stringent analysis, we 
compared the expression of APA isoforms from the same 
genes based on their differential expression (e.g., APA 
isoforms vs. other APA isoforms within a gene carrying a 
rhythmic APA isoform in AR- and/or NR-fed mice). 
Visualization of these other APA isoform expression in NR-
fed mice with heatmaps, along with the computation of the 
average z-score per bin of 4 hours, confirmed that these other 
APA isoforms were expressed arrhythmically in NR-fed mice 
(Figure 5E, 5F, S6B, S6C). Examination of Col18a1 and Neu1 
expression in AR- vs. NR-fed mice exemplified these results 
(Figure 5G). The difference in Col18a1 rhythmicity at the gene 
level between NR- and AR-fed mice was solely due to 
changes in the level of the distal APA2 isoform, as the 
proximal APA1 isoform remained arrhythmically expressed in 
both feeding paradigms. Similarly, the rhythmic expression of 
Neu1 gene in NR-fed but not AR-fed mice was due to the 
differential expression of the proximal APA1 isoform between 
the two feeding protocols (Figure 5G). Interestingly, the distal 
APA3 isoform of Neu1 was also rhythmically expressed in 
NR-fed mice. However, its peak of expression was in 
antiphase to that of APA1 isoform, suggesting that the 
decreased cleavage of the proximal APA1 at dusk contributes 
to the increase APA3 signal at dawn. Such a mechanism is 
however not prevalent at the genome-wide level, as most 
genes harbor only one APA isoform being differentially 
rhythmic between AR- and NR-fed mice (Figure 5C, 5D).  

Finally, we examined the PAS location of differentially 
rhythmic APA isoforms between NR- and AR-fed mice, and 
found that they were strongly enriched in distal PAS and 
depleted in truncated PAS (Figure 5H). Together with our 
finding that BMAL1 facilitates the expression of APA isoforms 
with longer UTRs, these results suggest that changes in TF 

activity at promoters and other cis-regulatory regions 
preferentially regulate the expression of distal APA isoforms.  

 
Many genes undergo daily rhythms in 3’ UTR length 
Next, we sought to determine if differential rhythmicity 
between APA isoforms could lead to daily rhythms in 3’ UTR 
length. By computing the relative 3’ UTR length for each gene 
and examining its rhythmicity across the 24-hour day, we 
identified 300 genes exhibiting overt rhythms of 3’ UTR length 
(Figure 6A). Interestingly, a strong phase bias was observed, 
with 74.0% of transcripts having longer 3’ UTR between ZT20 
and ZT08, i.e., in anticipation of the daytime rest phase in 
mice (Figure 6B, 6C).  

To test if the rhythm of 3’ UTR length could be due to 
isoforms with a specific PAS location peaking at distinct 
phases, we examined the proportion of distal, proximal, and 
other APA transcripts that were rhythmically expressed 
across the 24-hour day per bin of 2 hours. Remarkably, PAS 
location strongly impacted the phase of rhythmic APA isoform 
expression, with distal APA transcripts representing the 
majority of isoforms peaking at dawn, and proximal, middle, 
and truncated APA isoforms representing a larger fraction of 
isoforms peaking at dusk (Figure 6D). Because this finding 
further supports the notion that not all APA isoforms of a gene 
are rhythmic, we compared rhythmic APA isoforms vs. 
arrhythmic APA transcripts located within genes containing a 
rhythmic APA isoform using heatmaps and averaged z-score 
per 4-hour bin. These analyses confirmed striking differences 
in the rhythmic expression of APA isoforms of a given gene, 
thus confirming that rhythmic gene expression is largely APA 
isoform specific (Figure 6E, 6F). 

We then tested if feeding rhythms could impact 3’ UTR 
length by examining the relative 3’ UTR length in NR-fed and 
AR-fed mice. Similar to the rhythm observed in ad libitum fed 
mice, many genes in NR-fed mice exhibited a rhythm in 3’ 
UTR length, with longer 3’ UTRs at the end of the 
night/beginning of the day (Figure 6G). Remarkably, very few 
genes exhibited a rhythm in 3’ UTR length in AR-fed mice, 
and no phase preference was observed (Figure 6G). 
Consistent with the rhythm in 3’ UTR length in NR-fed but not 
AR-fed mice, distal APA transcripts represented the majority 
of isoforms peaking at the night:day transition in NR-fed mice, 
while proximal and middle APA isoforms represented a larger 
fraction of the APA isoforms peaking at the day:night 
transition (Figure 6H). Moreover, PAS location had no effect 
on the phase of rhythmic APA isoform expression in AR-fed 
mice (Figure 6H). Taken together, these results suggest that 
rhythmic food intake significantly contributes to the rhythms of  

(E) Heatmaps representing the arrhythmically expressed APA isoforms located in a gene containing an APA transcript being rhythmic in NR-
fed mice only (RA group). APA isoforms are ordered based on the phase of the rhythmic APA transcript located in the same gene. Only 
genes showing differential rhythmicity (DODR, p<0.05) were considered. Each heatmap column represent a single liver sample for AR- and 
NR-fed mice (n=18 total per condition; 6 timepoints, n=3 per time point).  
(F) Expression of APA isoforms being rhythmic in NR-fed mice only (RA group) with a peak expression occurring between ZT0 and ZT4 
(dark grey and dark red), and of arrhythmic APA isoforms transcribed from a gene harboring a rhythmic isoform in NR-fed mice only (light 
grey and pink). Expression corresponds to the averaged z-score +/- sem of three mice per timepoint.  
(G) Left: IGV browser view of Col18a1 and Neu1 expression in the liver of NR-fed (grey) and AR-fed (red) mice across the 24-hour day. 
Signal for each time point corresponds to the average signal of 3 biological replicates. Right: expression of Col18a1 and Neu1 at the gene 
level and at the level of individual APA isoforms. R = rhythmic expression; AR = arrhythmic expression. The sum of APA signal does not 
exactly match gene signal because of normalization procedure (see methods for details).  
(H) Location of APA isoforms (genes with 2+ PAS) being rhythmic in both AR-fed and NR-fed mice (RR group), NR-fed mice only (RA 
group), or AR-fed mice only (AR group). * denotes a significant enrichment (hypergeometric test; p < 0.05).  
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Figure 6: Many genes exhibit a diurnal rhythm of 3’ UTR length  
(A) Heatmap representing the relative 3’ UTR length for genes showing a significant rhythm in relative 3’ UTR length variation across the 24-
hour day (q < 0.05; n = 300). Shorter tail length is displayed in red while longer tail length is displayed in blue. The blue line across the 
heatmap represents the peak phase of longer relative 3’UTR length.  
(B) Rose plot showing the peak phase of 3’UTR length rhythms (n=300 genes, q<0.05; n=392 genes, q<0.1).  
(C) Number of genes showing a longer (blue) or shorter (red) relative 3’UTR length between ZT20 and ZT08.   
(D) Effect of PAS location on APA isoform peak phase rhythmic expression. Values represent the percentage of rhythmic APA isoform with a 
specific PAS location exhibiting a peak expression at a specific time of the day per bin of 2 hours.  
(E) Heatmaps representing all APA isoform exhibiting a rhythmic expression in the liver of wild-type mice (left, n=4,258), and representing all 
arrhythmic APA isoforms located in a gene containing at least one rhythmic APA isoform (right, n=6,454). RNA-Seq signal for each isoform 
was mean-normalized, and the z-scores calculated for each gene based on all isoforms. Only genes with two or more APA isoforms were 
included in the heatmaps. For both heatmaps, APA isoforms were ordered based on the phase of the rhythmic APA isoforms. Each heatmap 
column represent a single liver sample for both total and nuclear RNA (n=36 total; 6 timepoints, n=6 per time point).  
(F) Quantification of APA isoform expression for all rhythmic APA isoforms (blue), and of all arrhythmic APA isoforms located in a gene 
containing at least one rhythmic APA isoform (orange). Values were calculated as described above for panel E, parsed in bins of 4 hours 
based on peak expression, and correspond to the averaged z-score +/- sem of 6 mice for each timepoint. 
(G) Rose plot showing the peak phase of 3’UTR length rhythms in NR-fed mice (grey; n=612 genes, q<0.05; n=767 genes, q<0.1) and AR-
fed mice (red; n=117 genes, q<0.05; n=186 genes, q<0.1). 
(H) Effect of PAS location on APA isoform peak phase rhythmic expression in NR-fed and AR-fed mice. Values represent the percentage of 
rhythmic APA isoform with a specific PAS location exhibiting a peak expression at a specific time of the day per bin of 2 hours.  
(I) Gene Ontology - Cellular Compartment analysis for genes showing a rhythm in relative 3’ UTR length with longer UTRs peaking between 
ZT20 and ZT04 (q < 0.05; n = 166). 
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3’ UTR length, and in the location of APA isoform-specific 
rhythmic expression.  

Because alternative 3’ UTRs have been demonstrated to 
act as scaffolds to regulate membrane protein localization 
(e.g., plasma membrane vs. endoplasmic reticulum 
membrane; Berkovits and Mayr, 2015), we performed a gene 
ontology and KEGG pathway analysis of the genes displaying 
a rhythm in relative 3’ UTR length with longer UTRs peaking 
at dawn (Figure 6I, Table S13). Interestingly, most of them 
were enriched for proteins associated with membrane-bound 
organelles, including endoplasmic reticulum, nuclear 
envelope, and mitochondria (Figure 6I, Table S13). Taken 
together, these results suggest that APA may generate 
rhythms of protein expression in specific membrane-bound 
organelles. 

 
Rhythmic APA isoforms exhibit a rhythmic enrichment 
for RBP motifs at their PAS 
Increasing evidence indicates that recognition of PAS 
sequences by the cleavage and polyadenylation (CPA) 
complex is strongly regulated by cis-acting regulatory RBPs 
that either facilitate or inhibit the usage of proximal PAS 
(Mayr, 2017; Shi and Manley, 2015). For example, binding of 
the RBPs HuR (aka Elavl1) and TIA1 in 3’ UTRs favors the 
usage of distal PAS (Hilgers et al., 2012; Zheng et al., 2018), 
whereas CPEB1 binding shortens UTRs (Bava et al., 2013). 
To determine if the out-of-phase usage between distal and 
other PAS (Figure 6D) could be regulated by the differential 
recruitment of RBPs across the 24-hour day, we performed a 
motif analysis for RBPs at PAS of rhythmically expressed 
APA isoforms (-150bp to + 50bp from PAS). To control for 
background motifs, we used the 6,454 arrhythmic PAS 
located within genes containing at least one rhythmic isoform 
(Figure 6E). In addition, we parsed the 4,258 rhythmic PAS 
into six equally-sized bins based on APA isoform peak 
expression to eliminate the effects of bin size on p-value 
enrichment (Figure 7A). Using these parameters for the 
analysis of 84 unique mammalian RBP motifs, we found that 
more than half of the RBP motifs were enriched in at least one 
of the six bins (45 out of 84; Figure 7A, Table S14). Strikingly, 
almost all RBP motifs showing enrichment in at least one bin 
displayed an enrichment that is rhythmic over the light:dark 
cycle (Figure 7B, Table S14). RBP motif enrichment was 
mostly concentrated towards specific phases, with for 
example, 21 RBP enriched motifs peaking between ZT0 and 
ZT4, i.e., concomitant to the phase of distal APA isoform 
expression (Figure 7B, 6D). 

Of the 41 RBPs whose binding motifs displayed a 
rhythmic enrichment, 10 were expressed rhythmically at the 
mRNA level in mouse liver, while 22 were expressed 
arrhythmically and 9 were not expressed (Figure 7B). 
Interestingly, the phase of rhythmic RBP expression 
coincided for several of them with their rhythmic motif 
enrichment, suggesting that their rhythmic expression likely 
contributes to the rhythmic expression of their target isoforms 
(e.g., HuR, Figure 7C). Conversely, the expression of the two 
RBPs Sfpq and Hnrnpk was in antiphase with their motif 
enrichment (Figure 7C). This may be explained by reports 
showing that the binding of these RBPs to 3’ UTRs facilitates 
miRNA recruitment and downstream degradation of their 
target mRNA (Bottini et al., 2017; Li et al., 2019). However, 
the lack of rhythmic expression for most RBPs suggests that 

rhythmic RBP expression alone does not account for their 
potential rhythmic binding to 3’ UTRs, and that other 
mechanisms such as co-transcriptional RBP loading to Pol II 
may be in play. 

Taken together, our analysis demonstrates that the 3’ 
UTRs of rhythmic APA isoforms are enriched for a large 
number of RBP motifs, and suggest that the rhythmic binding 
of RBPs at specific PAS significantly contributes to isoform-
specific regulation of rhythmic gene expression in mouse 
liver.  
 
 
Discussion 
Rhythmic gene expression is critical for the temporal 
organization of nearly every biological function across the 24-
hour day, and its disruption often leads to the development of 
pathological disorders (Bass and Takahashi, 2010). Cycling 
transcriptomes have been characterized in many species and 
tissues, with RNA-Seq datasets predominantly analyzed as in 
other fields by concatenating the different transcript variants 
in a single gene model. Yet, increasing evidence indicate that 
different isoforms from a single gene can carry out different 
functions. In the case of APA, which leads to truncated 
transcripts or transcripts with different 3’ UTR lengths, 
isoforms can have different stability, subcellular localization, 
and translation efficiency (Tian and Manley, 2013, 2017). In 
the present study, we showed that most rhythmically 
expressed genes contain a combination of rhythmic and 
arrhythmic APA isoforms, and that hundreds of genes 
categorized as arrhythmic actually harbor rhythmic APA 
isoforms. Isoforms peaking at dusk are surprisingly depleted 
in distal APA transcripts, thereby contributing to the 
expression of isoforms with shorter 3’ UTRs in anticipation of 
the mouse active phase. Taken together, our findings indicate 
that rhythmic gene expression is largely APA isoform-specific, 
thereby uncovering an integral role of APA in the circadian 
clock control of cellular functions.  

Differences in rhythmic expression between APA isoforms 
does not appear to rely on a single mechanism, but rather 
seems to involve several independent processes. While many 
transcript isoforms are expressed in specific cell subtypes 
(e.g., 24.4% in mouse liver; Figure 2) (Booeshaghi et al., 
2020; Hu et al., 2020; Lianoglou et al., 2013), cell subtype-
specificity only contributes moderately to the differential 
rhythmicity between of APA isoforms. In contrast, post-
transcriptional regulation is highly prevalent, especially for the 
generation of rhythmic APA isoforms from arrhythmically 
transcribed transcripts (i.e., Group 1 isoforms, Figure 3). The 
contribution of post-transcriptional events to rhythmic gene 
expression has been widely reported (Koike et al., 2012; 
Kojima and Green, 2015; Menet et al., 2012; Wang et al., 
2018a), and our results therefore indicate that post-
transcriptional regulation extends to the expression of 
individual transcript isoforms.  

Besides post-transcriptional events and cell subtype-
specific expression, transcription factor-driven expression of 
specific APA isoforms emerged as a mechanism contributing 
to the rhythmic expression of specific APA isoforms. Contrary 
to prevailing models, Bmal1-/- does not uniformly affect the 
expression of every isoform of a gene. More than 80% of the 
genes having a misregulated isoform in Bmal1-/- mice show 
differential regulation between APA isoforms (Figure 4E). In 
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addition, changes in feeding rhythms in wild-type mice affect 
rhythmic gene expression in a largely APA isoform-specific 
manner, with 75-80% of the affected genes exhibiting an 
effect on only a single APA isoform (Figure 5C). Although we 
cannot completely rule out a role for post-transcriptional 
events in this process, reports from the literature strongly 
suggest that food intake regulates gene expression by 
primarily regulating the transcriptional activity of metabolic 
transcription factors (Desvergne et al., 2006). 

How changes in transcription factor activity impact the 
expression of specific APA isoforms is not well understood. 
Report that the loading of the RBP ELAV at promoters 
influences the recognition of alternative PAS suggests that 
co-transcriptional recruitment of RBPs may be involved 
(Oktaba et al., 2015). This possibility is further supported by 
studies demonstrating that promoter events facilitate the co-
transcriptional loading of RBPs or effectors to control several 
RNA processing events, including mRNA decay (Bregman et 

 
 
Figure 7: Rhythmic APA isoforms exhibit a rhythmic enrichment for many RBP motifs  
(A) Flowchart describing the procedure undertaken for the RBP motif analysis at rhythmically expressed APA isoforms, and pie chart 
illustrating the number of RBPs showing no enrichment at any timepoint (grey; n=37), enrichment in at least one timepoint but with arrhythmic 
enrichment overall (brown, n=4), and enrichment in at least one time point with rhythmic enrichment (n=41, yellow). 
(B) Left: Heatmap illustration of the rhythmic enrichment for 41 unique RBP binding motif (blue: no enrichment; yellow: high enrichment). 
Right: Phase of rhythmic enrichment for each of the 41 RBP binding motif. The color of each dot illustrates the RBP mRNA expression in 
mouse liver: orange: rhythmic expression; green: arrhythmic expression; grey: no expression.  
(C) Mouse liver mRNA expression (black) and RBP binding motif enrichment (maroon) for six rhythmically expressed RBPs displaying a 
rhythmic motif enrichment. Peak phase of mRNA expression and motif enrichment are displayed in black and maroon, respectively.  
(D) Model describing how transcription factor-driven activity of cis-regulatory regions can regulate the loading of RBPs on nascent transcripts 
and, consequently, regulate the expression of specific APA isoforms (see text for details). CPA complex: cleavage and polyadenylation 
complex; TF-A and TF-B: transcription factor A and B, respectively; RBP-A and RBP-B: RNA binding protein A and B, respectively.  
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al., 2011; Shalem et al., 2011; Trcek et al., 2011), mRNA 
localization (Bertrand et al., 1998; Niedner et al., 2014; Zid 
and O'Shea, 2014), polyadenylation (Nagaike et al., 2011), 
mRNA N6-adenosine methylation (Slobodin et al., 2017), and 
translation (Slobodin et al., 2017; Zid and O'Shea, 2014). 
Consistent with this possibility, RBPs play a critical role in 
APA isoform specific expression, by either facilitating or 
inhibiting the loading of the CPA complex to proximal PAS 
and, consequently, by either shortening or lengthening the 
3’UTR (Gruber and Zavolan, 2019; Mayr, 2017; Shi and 
Manley, 2015; Xu and Zhang, 2018). Interestingly, many 
RBPs are recruited to promoters and enhancers in 
mammalian cells, and this binding often correlates with target 
gene expression (Van Nostrand et al., 2020; Xiao et al., 
2019). Based on these and our data, it is tempting to 
speculate a model whereby increased activity of a 
transcription factor mediates the co-transcriptional loading of 
RBPs to RNA polymerase II and, subsequently, loading of 
these RBPs to the nascent transcript to either stimulate or 
inhibit the usage of proximal or middle PAS (Figure 7D). As a 
result, rhythmic activity of a transcription factor would mediate 
the rhythmic expression of specific APA isoforms by 
promoting the rhythmic loading of RBPs to either proximal, 
middle, or distal PAS (Figure 7D).  

The role of RBPs in APA has been widely described (Liu 
et al., 2013; Shi and Manley, 2015), and it is commonly 
assumed that their loading to UTRs alters the relative ratio 
between proximal and distal APA isoform expression without 
regulating overall transcription levels. As exemplified by 
Col18a1 and Neu1 expression under AR- and NR-feeding 
(Figure 5G), our data demonstrate that the expression of APA 
isoforms from a same gene can be regulated independently 
from one another. Given that defects in APA have been 
observed in several diseases including cancer (Chang et al., 
2017; Masamha and Wagner, 2018), it will be interesting to 
determine whether alteration of APA isoforms expression in 
these disease states solely occurs through shifting the usage 
of distal to proximal PAS, or if increased activity of oncogenic 
transcription factors also contributes to 3’ UTR shortening 
(Mayr and Bartel, 2009).  

Characterization of APA isoform expression in different 
cell types and tissues revealed that proliferative cells (e.g, 
immortalized cell lines, ES cells, cancer cells, embryonic cells  
and tissues) tend to exhibit shorter 3’ UTRs whereas 
differentiated and senescent cells tend to exhibit longer 3’ 
UTRs (Chen et al., 2018; Lackford et al., 2014; Shepard et al., 
2011). Our finding that many genes in mouse liver exhibit a 
daily rhythm in 3’ UTR length with shorter UTRs in anticipation 
to the mouse active phase (Figure 6) suggest that this rhythm 
likely has some physiological relevance for the regulation of 
hepatic cell biochemistry across the 24-hour day. 
Interestingly, disappearance of this rhythm in AR-fed mice 
strongly suggests some coupling between 3’ UTR length and 
metabolic functions.  

Given the emerging role of UTRs in a wide array of 
processes (Mayr, 2017, 2019), it is highly likely that the 
rhythmic regulation of APA isoform expression has large 
impacts on the rhythmicity of biological functions. The recent 
demonstration that differences in 3’ UTR length can regulate 
the subcellular localization of many transmembrane proteins 
(e.g., endoplasmic reticulum vs. plasma membrane) without 
altering the protein sequence would suggest that some 

proteins could be rhythmic in some specific subcellular 
compartments while arrhythmic in others (Berkovits and 
Mayr, 2015). This possibility is supported by our findings that 
differentially expressed APA isoforms and genes exhibiting a 
rhythm in the relative 3’ UTR length are enriched in 
membrane-enclosed organelles (Figure 1E, 1F, 6I). 3′ UTRs 
have also been shown to assist co-translational multiprotein 
complex assembly, protein oligomerization, and the formation 
of protein-protein interactions (Chang et al., 2006; Duncan 
and Mata, 2011; Halbach et al., 2009; Lee and Mayr, 2019). 
It will be interesting to determine if the increased number of 
APA isoforms with longer 3’ UTRs at dawn could be involved 
and facilitate the formation of specific multiprotein complexes.  

In summary, our data demonstrate that rhythmic gene 
expression is largely APA isoform-specific, and that the 
expression of individual APA isoforms can be regulated, at 
least in the context of biological rhythms, independently from 
other isoforms. Given that defects in APA are increasingly 
associated with health risks and diseases (Creemers et al., 
2016; Gruber and Zavolan, 2019; Lee et al., 2018; Mayr and 
Bartel, 2009), our findings will likely be relevant for linking 
alternative PAS usage to the development of pathological 
disorders.  
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Methods 
Animals 
C57BL6/J and Bmal1-/- mice were raised in-house on a 12 
hour light : 12 hour dark cycle (LD12:12), and maintained on 
ad libitum water and food. Mice were anesthetized with 
isoflurane, decapitated, and the liver collected. The left lateral 
lobe was cut into three equivalent-sized pieces for RNA 
processing, with the remainder stored together. All collected 
tissues were flash-frozen in liquid nitrogen and stored at -
80°C. All animals were used in accordance with the 
guidelines set forth by the Institutional Animal Care and Use 
Committee (IACUC) of Texas A&M University (AUP #2019-
0222).  
 
Nuclear RNA isolation 
50 to 100 mg of frozen mouse liver tissue was resuspended 
in 1X PBS and transferred to a 2mL glass homogenizer. 
Tissues were homogenized with pestle A 6 times and pestle 
B 4 times. Nuclei were washed twice with the hypotonic 
buffer, separated by centrifugation at 1,500 g for 2 minutes at 
4°C. Nuclei were then resuspended in hypotonic buffer (10 
mM Hepes, pH 7.6, 15 mM KCl, 0.15% NP-40, 1 mM DTT, 1 
mM PMSF), added on the top of a sucrose cushion (10 mM 
Hepes, pH 7.6, 15 mM KCl, 0.15% NP-40, 24% sucrose, 1 
mM DTT, 1 mM PMSF), and centrifuged at 20,000 g for 10 
minutes at 4°C. The supernatant was carefully removed, and 
the nuclei washed twice with resuspension buffer (10 mM Tris 
pH7.5, 150 mM NaCl, 2 mM EDTA, 1 mM PMSF), and used 
immediately for RNA extraction. 
 
RNA extraction and processing 
Total and nuclear RNA were extracted with TRIzol reagent 
following manufacturer recommendation. Total RNA was 
extracted from a frozen liver sample (left lateral lobe), while 
nuclear RNA was extracted from a nuclei pellet. Frozen tissue 
or nuclei pellet were mixed with 300µL of TRIzol reagent, 
homogenized with a pellet mixer, and the volume brought to 
1mL with 700mL of TRIzol reagent. 500 µl of TrIzol reagent 
was added to each 500 µl gradient fractions. After TRIzol 
reagent RNA extraction, RNA was further purified with an acid 
phenol/chloroform extraction and ethanol precipitation. Each 
sample was quantified by NanoDrop-1000 and Promega 
QuantiFluor ssRNA system, and integrity assessed by gel 
electrophoresis. 
 
Library generation and sequencing 
RNA-Seq libraries were generated using the Lexogen 
QuantSeq 3’ mRNA-Seq Library Prep Kit following 
manufacturer instructions, beginning with 2µg of total RNA as 
starting material. cDNA was PCR-amplified for 12 cycles 
following manufacturer recommendations for mouse liver 
tissue. Libraries were multiplexed in equimolar concentrations 
and sequenced across multiple runs using an Illumina 
NextSeq 500 (Molecular Genomics Workspace, Texas A&M 
University, USA).  
 
Data processing 
Sequenced reads were pre-processed with the R package 
ShortRead (Morgan et al., 2009) to remove the first 12nt, 
remove low quality bases at the 30 end, trim poly-A tails and 
embedded poly-A sequences, and remove all reads under 
36nt in length. Reads were aligned to the mm10 

transcriptome, assembly GRCm38.p4, with the STAR aligner 
(Dobin et al., 2013) version 2.5.2b with options: --
outSAMstrandField intronMotif–quantMode 
GeneCounts –outFilterIntronMotifs 
RemoveNoncanonical 

Secondary alignments were removed with samtools view 
-F 0x100. Read counts were summarized with the function 
summarizeOverlaps from the R package GenomicRanges 
(Lawrence et al., 2013) using options: 
mode=IntersectionStrict inter.feature=FALSE. 
Libraries were filtered and normalized by library size using the 
Trimmed Mean of M-values (TMM) normalization (Robinson 
and Oshlack, 2010) within edgeR (Robinson et al., 2010) 
using default settings.  
 
PAS mapping  
Initial PAS definition was performed through the combination 
of two separate analyses. First, all total RNA reads as well as 
the reads from the 72 samples from (Greenwell et al., 2019) 
(total of 108 separate libraries) were trimmed to their 3' most 
mapped nucleotide, taking into account the CIGAR string. In 
the first analysis, the 3’ nucleotides were immediately put 
through peak calling by HOMER (Heinz et al., 2010) to find a 
broad range of potential APAS using the following options: 
makeTagDirectory -precision 3 -totalReads all 
-fragLength 1 -keepAll 
findPeaks -strand separate -tbp 0 -fragLength 

1 -size 10 -minDist 25 -ntagThreshold 
2 –region 

resulting in 76,018 prospective PAS.  
In the second analysis, we attempted to define all APAS 

that represented the exact end of transcripts. Therefore, all 3’ 
most nucleotide reads were filtered to only those containing 
at least 6 consecutive adenine residues at the 3’ end in the 
original unmodified read, indicating that these reads are 
directly against the poly(A) tail. Next, we scanned the genome 
20nt downstream of the mapped 3’ end of these reads and 
removed those with 12 or more adenine residues in those 
20nt, indicating that they existed due to internal priming 
events. Reads in both steps were filtered out using custom 
Perl scripts. Finally, PAS were defined through HOMER using 
the following options: 
makeTagDirectory -precision 3 -totalReads all 
-fragLength 1 -keepAll 
findPeaks -strand separate -tbp 0 -fragLength 
1 -size 10 -minDist 25 -ntagThreshold 5 –
region 
resulting in 31,837 prospective APAS.  

The two sets of APAS were then concatenated and 
combined to yield a single list using the reduce function from 
GenomicRanges (Lawrence et al., 2013). Finally, any APAS 
found to overlap with the mm10 blacklisted regions generated 
by ENCODE were removed (Amemiya et al., 2019; Yue et al., 
2014). A total of 86,780 possible APAS resulted from these 
steps (Table S2). 
 
PAS filtering 
PAS were annotated to genes using their overlaps with each 
gene part with summarizeOverlaps from GenomicRanges 
(Lawrence et al., 2013), with a final annotation performed 
using a priority list. TSS were defined as the region +0 to 
+100nt from the annotated TSS. TTS were defined as the 
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region -20nt to +20nt from the annotated TTS. Finally, 
downstream regions were defined as up to 2kb from the end 
of the TTS above. Next, we removed all PAS that contained 
genomic poly(A) stretches that escaped detection in the 
previous steps. The region from -15 to +5 of the 3’ end of 
every PAS was analyzed, and those with 12 or more adenine 
residues were removed. Since the downstream annotation 
can potentially result in ascribing APAS of a downstream 
gene to the upstream and unrelated gene, we removed all 
PAS that were annotated as downstream yet interior of 
another gene. Raw count values were then normalized by 
library size using the Trimmed Mean of M-values (TMM) 
normalization (Robinson and Oshlack, 2010) within edgeR 
(Robinson et al., 2010) using default settings. 

We next examined whether all APAS for each gene 
accounted for the gene expression seen in total RNA on a 
log2-scale. Any genes where the sum of PAS expression 
overlapping the CDS was less than half of its total expression 
or more than the total expression + 0.5 were removed (Figure 
S1D). Finally, we examined the expression of each PAS and 
included in the final filtered list if their contribution was more 
than 10% of the total gene signal, or if it had a mean TMM 
value over 5. Any PAS that had a maximum contribution to 
any transcript under 0.5% of total as well as a mean TMM 
value under 0.5 was automatically discarded. All leftover PAS 
between these two ranges were tested for overlap with a 
publicly available database of APAS (Wang et al., 2018b). 
APAS from PolyA_DB were extended upstream to a total of 
75nt, and any of our APAS that overlapped with those from 
PolyA_DB were kept. After filtering, a total of 29,199 high-
confidence APAS remained (Table S1). 
 
Rhythmicity and differential rhythmicity analysis 
Rhythmicity analysis for every gene and PAS in the 4 
paradigms was performed with four algorithms from three 
programs: F24 (Hutchison et al., 2015; Wijnen et al., 2005), 
JTK_CYCLE and LS from MetaCycle (Wu et al., 2016), and 
HarmonicRegression (Hughes et al., 2009). The resulting p-
values from all 4 algorithms were combined using Fisher’s 
method into one p-value, all of which were then adjusted 
using the Benjamini-Hochberg method (Benjamini and 
Hochberg, 1995) within the p.adjust function available in base 
R to control for the false-discovery rate (FDR). Genes with a 
q-value under 0.05 were considered rhythmic for that 
paradigm. 

Differential rhythmicity analysis was performed with the 
robustDODR algorithm within DODR (Thaben and 
Westermark, 2016). Genes and PAS with a p-value less than 
0.05 were considered as differentially rhythmic. 

The similarity analysis was performed by ranking the 
Pearson correlation of two paired sets of expression values in 
log2 vs. the Pearson correlations from 10,000 trials where one 
set of values was randomized against the other. The paired 
set of expression values were considered as similarly 
expressed if the experimental Pearson correlation coefficient 
was within the top 5% of the 10,000 coefficients calculated 
through permutations.  
 
Differential expression analysis 
All differential expression analysis was performed using 
DESeq2 (Love et al., 2014) using default settings.  
 

Analysis of BMAL1 target genes 
Mouse liver BMAL1 target genes were defined as genes 
containing a BMAL1 ChIP-Seq peak in their locus (from -10kb 
from the transcription start sites to +1kb to the transcription 
termination sites), and exhibiting a differential rhythmicity by 
DODR (p < 0.05) in Bmal1-/- mice fed only at night when 
compared to wild-type mice fed only at night. Specifically, we 
used the list of BMAL1 ChIP-Seq peaks published by 
Beytebiere et al., 2019 (Table S1; Beytebiere et al., 2019), 
and the mouse liver RNA-Seq datasets from Bmal1-/- and 
wild-type mice fed only night published by Atger et al., 2015 
(Atger et al., 2015), and analyzed as in Greenwell et al., 2019 
(Table S2; Greenwell et al., 2019). 
 
Relative 3’UTR length 
The distance between the center of a PAS and the 3’ end of 
the corresponding gene was calculated for all PAS. These 
distances were then weighted by the percentage signal each 
PAS contributed to the total gene signal at each timepoint. 
Rhythmicity calculations were performed on the weighted 
relative 3’ UTR length as described above for the analysis of 
rhythmic gene expression. 
 
RBP motif analysis 
Enrichment of RBPs were calculated by taking the position 
probability matrices (PPMs) provided by the Hughes lab (Ray 
et al., 2013) and converting them to positional weight matrices 
(PWMs). Using the R package PWMEnrich (Stojnic and Diez, 
2014), background enrichment for each PWM was calculated 
using the arrhythmic PAS found in all genes that contain both 
arrhythmic and rhythmic PAS (n = 6,454 PAS). The final 
enrichment of each PWM was then calculated against the 
background PAS for all rhythmic PAS (n = 4,258 PAS), and 
for PAS parsed in 6 equally-sized bins based on peak phase 
of expression. Bins were equally sized to eliminate the effects 
of bin size on p-value enrichment. Starting from the light on 
signal (ZT0), the length of each bin was 3.42, 5.21, 3.87, 3.8, 
4.5, and 3.2 hours. Rhythmic analysis of RBP motif 
enrichment was performed using Metacyle (Wu et al., 2016). 
 
Single cell mouse liver reconstruction 
Methods indicated in the original paper (Halpern et al., 2017) 
were followed as closely as possible. Single-cell data were 
downloaded from GEO (GSE84498) and aligned to the mm10 
transcriptome as above. Gene expression for all genes as 
well as the ERCC92 spike-in was performed using 
summarizeOverlaps from the GenomicRanges package 
(Lawrence et al., 2013) with the following options: 
mode = "IntersectionStrict", singleEnd = TRUE, 

ignore.strand = FALSE, inter.feature = 
FALSE 

Cells were removed if the total of their reads mapping to 
ERCC92 was greater than 4% of the total of reads mapping 
to the genome (Risso et al., 2014). Genes were removed from 
consideration if the total number of reads mapping to them 
was 0. All libraries were then normalized to library depth using 
the TMM normalization as above. Next, we summed the 
expression of markers for hepatocytes (Apoa1, Apob, Pck1, 
G6pc, Ttr), endothelial cells (Kdr, Egf17, Igfbp7, Aqp1), and 
Kupffer cells (Clec4f, Csf1r, C1qc, C1qa, C1qb). Cells with a 
greater total for the endothelial or Kupffer marker genes were 
labeled as endothelial or Kupffer cells, respectively. Cells that 
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had a higher total for both over the hepatocyte marker genes 
were discarded. All remaining cells were labeled as 
hepatocytes. Any hepatocyte cell with less than 1% of total 
expression coming from albumin (Alb) was discarded. In 
order to separate hepatocytes by their zonation profile, PCA 
analysis was performed on all hepatocytes using their 
expression for the 20 marker genes indicated in (Braeuning 
et al., 2006), and hepatocytes were split into three even 
groups (H1, H2, H3) based on their PC1 value. Finally, 
another PCA analysis was performed on all cells using a 
combination of the Braeuning hepatocyte, Kupffer, and 
endothelial marker genes. 

For PAS expression in the single-cell data, the 3’ end of 
all reads was taken and quantified across all accepted 29,199 
PAS. The raw reads for all 5 groups (H1, H2, H3, Kupffer, and 
endothelial) were summed up. Due to the differing 
chemistries between 3’ QuantSeq and MARS-Seq, some 

PAS did not match well, and so any PAS with fewer than 5 
reads in total was removed. The remaining PAS were then 
TMM-normalized as above. 
 
KEGG and GO analyses 
All KEGG and GO analyses were performed using the kegga 
and goana functions available within limma (Ritchie et al., 
2015). Gene symbols were converted to Entrez IDs with 
AnnotationDbi (Pagès et al., 2019). 
 
Access to sequencing datasets 
All RNA-Seq datasets have been deposited to Gene 
Expression Omnibus (GEO). Access is currently password-
protected, but datasets will become publicly available under 
the Series GSE151173 once this manuscript is accepted for 
peer-reviewed publication.  
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Figure S1: Characterization of rhythmic APA isoform expression in mouse liver (related to Fig. 1) 
(A) Heatmap of the 2,880 genes being rhythmically expressed in mouse liver. Each heatmap column represent a single liver sample (n=36 
total; 6 timepoints, n=6 per time point).  
(B) Rose plot representing the distribution of peak phases of rhythmic gene expression.  
(C) Correlation between the expression of a gene and the sum of expression from its APA isoforms. APA isoforms that were excluded (see 
Methods section for details) are shaded gray. Those colored in purple/green/yellow were used to generate the final list of 29,199 APA 
isoforms that are considered in the present study.  
(D) Number of PAS per gene (n = 10,160 expressed genes) in mouse liver.  
(E) Rhythmicity of APA isoforms per gene, binned based on the number of APA isoforms per gene.  
(F) Number of differentially rhythmic APA isoforms (based on DODR analysis) per gene, binned based on the number of APA isoforms per 
gene.  
(G) Rhythmicity analysis used for the identification of genes having differentially rhythmic APA isoforms. This analysis identified 4 groups of 
genes (1A, 1B, 2A, 2B) that were combined into the two groups G1 and G2 considered in the current manuscript.  
(H) Heatmaps representation of total RNA expression of a gene (left) and of its corresponding differentially rhythmic APA isoform (right) for 
genes belonging to the groups 1A, 1B, 2A, 2B. 
(I) Number of PAS per gene for all genes, only those having 2 or more PAS, and for the Group 1 and 2 genes.  
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Figure S2: Examples of Group 1 genes (related to Fig. 1) 
(A-C) APA isoform expression for three Group 1 genes, i.e., genes that are arrhythmically expressed but harbor an APA isoform that is 
rhythmically expressed. Left: IGV browser view of Tmem106a (A), Myl6 (B) and Adipor1 (C) expression across the 24-hour day. Signal for 
each time point corresponds to the average of 6 biological replicates. Arrows indicate the different APA isoforms, and the day:night cycle is 
represented by the white and black bars, respectively. Right: expression of Tmem106a (A), Myl6 (B) and Adipor1 (C) at the gene and APA 
isoform levels. R = rhythmic expression; AR = arrhythmic expression. The sum of all PAS signal does not exactly match gene signal because 
of the normalization procedure (see methods for details).  
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Figure S3: Analysis of mouse liver APA isoform expression in different mouse liver cell subtype. (related to Fig. 2) 
Distribution of Gini scores for all APA isoforms in mouse liver. Gini scores above 0.65, which were considered as indicators of cell subtype 
specific expression, are colored in orange.  
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Figure S4: Analysis of mouse liver APA isoform expression in nuclear RNA. (related to Fig. 3) 
(A) Percent of reads aligning to exons, introns, or intergenic regions for the three types of libraries sequenced in this study (n = 108 libraries 
total). 
(B) Peak phase of rhythmic gene expression in total RNA (black) and nuclear RNA (green) for the genes being rhythmically expressed in 
both total and nuclear RNA.  
(C) Expression of core clock genes in the liver across the 24-hour day. Black: total RNA, wild-type mice. Green: nuclear RNA, wild-type mice. 
Blue: total RNA, Bmal1-/- mice. Each value represents the average +/- sem of 6 mice.   
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Figure S5: Analysis of mouse liver APA isoform expression in Bmal1-/- mice. (related to Fig. 4) 
(A) Percentage and number of BMAL1 target genes with 2 or more PAS displaying either a decrease, no effect, an increase, or a 
combination of effect in Bmal1-/- mouse liver.  
(B) Number of genes with at least 2 APA isoforms showing either a decrease, no effect, an increase, or a combination of effect Bmal1-/- 
mouse liver.  
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Figure S6: Analysis of APA isoform expression in the liver of mice fed only at night or fed arrhythmically. (related to 
Fig. 5) 
(A) Number of genes exhibiting differential rhythmicity for a single APA isoform or for multiple isoforms, in both AR-fed and NR-fed mice (RR 
group), NR-fed mice only (RA group), or AR-fed mice only (AR group). Number are parsed based on the number of APA isoforms per gene.  
(B) Heatmaps representing rhythmic APA isoforms (left) and arrhythmic APA isoforms located in a gene containing at least one rhythmic 
APA isoform (right). Heatmaps are shown for APA isoforms being rhythmically expressed in both AR-fed and NR-fed mice (RR group), NR-
fed mice only (RA group), or AR-fed mice only (AR group). For the RR group, APA isoforms were further divided in two groups based on 
differential rhythmicity (DODR < 0.05). For the AR and RA groups, only genes showing differential rhythmicity (DODR, p<0.05) were 
considered. RNA-Seq signal for each isoform was mean-normalized, and the z-scores calculated for each gene based on all isoforms. For 
each heatmap pair, APA isoforms were ordered based on the phase of the rhythmic APA isoforms. Each heatmap column represent a single 
liver sample for AR- and NR-fed mice (n=18 total per condition; 6 timepoints, n=3 per time point). 
(C) Expression of APA isoforms being rhythmic in NR-fed mice only (RA group) (dark grey and dark red), and of arrhythmic APA isoforms 
transcribed from a gene harboring a rhythmic isoform in NR-fed mice only (light grey and pink). Expression corresponds to the average +/- 
sem of three mice per timepoint, and is parsed by bins of 4 hours based on peak phase of rhythmic APA isoform expression in NR-fed mice.  
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